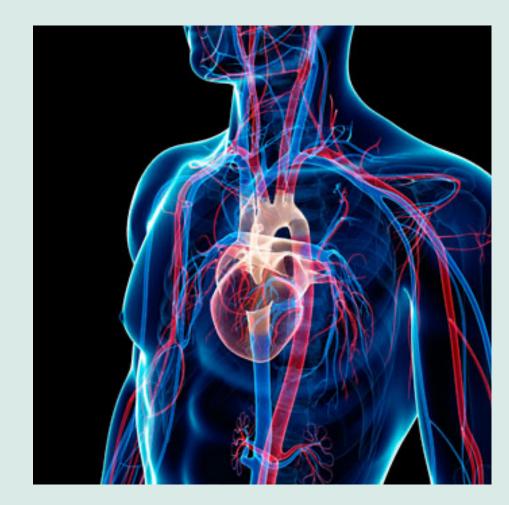

Electrophysiology: Understanding ECGs

Pathway of the blood through the heart

Notice how much thicker the walls (made of muscle!) on the **left side** are compared to the right side.

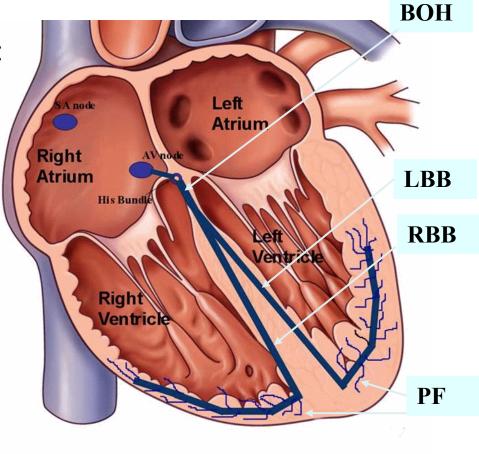

This is because the blood from the left side must be pumped to your limbs, which are very far away!

The blood that leave the right side of the heart travels to the lungs, which is relatively close

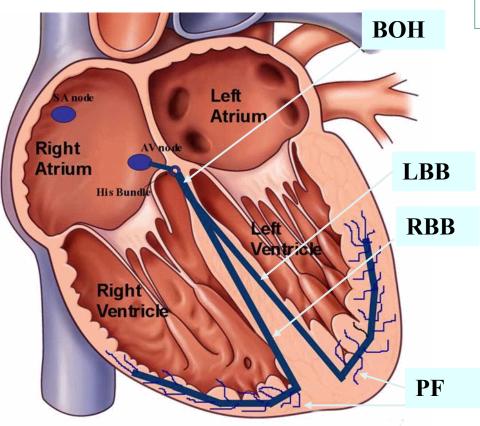
How does the heart move the blood?

- The heart muscle contracts in a coordinated way, which pumps the blood to where it needs to go.
- Cardiac electrophysiology is the branch of physiology that studies the electrical properties of the heart.

Electrophysiology: The Basics

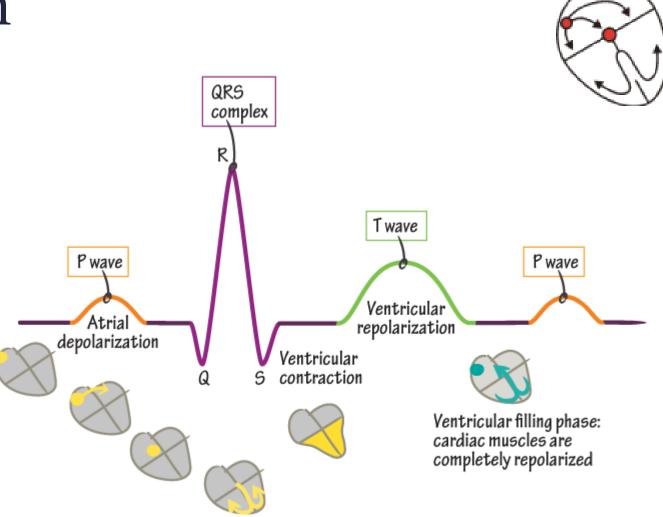

- The muscles in your body, including the muscles of the heart, contract in response to electrical stimulation by nerves
- An electrocardiogram (ECG or EKG) is a tracing of the electrical activity that is taking place within the heart.
- An electrocardiogram (ECG or EKG) assesses heart function by measuring and recording the electrical activity of the heart

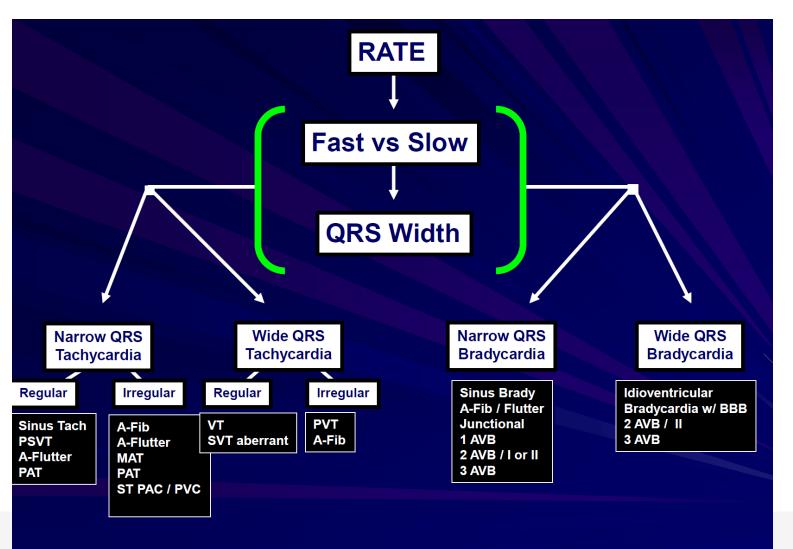
Impulse conduction: important structures


There are a few important structures to know:

- SA Node
- AV Node
- BOH = Bundle of His
- LBB = Left Bundle Branch
- RBB = Right Bundle Branches
- PF = Purkinje Fibers
- Left & Right Atrium
- Left & Right Ventricle

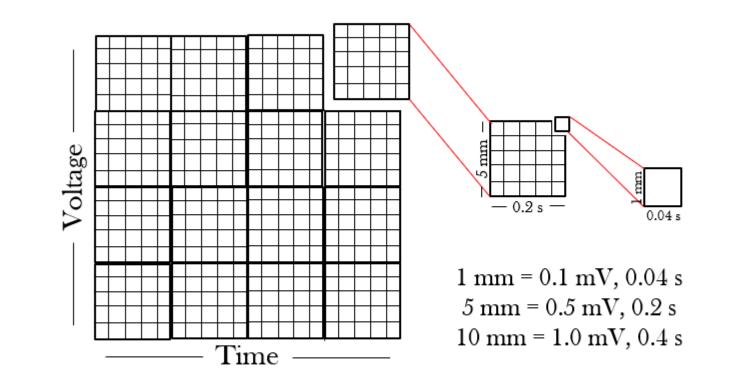
Electrophysiology: The basics


- In a normal and healthy heart, an electrical impulse will travel from the SA node, spread across the right atrium, to the AV node, where it then travels down the Bundle of His, the bundle branches, and subsequently the Purkinje Fibers.
- This electrical impulse causes the four chambers of the heart to contract and relax in a coordinated fashion.

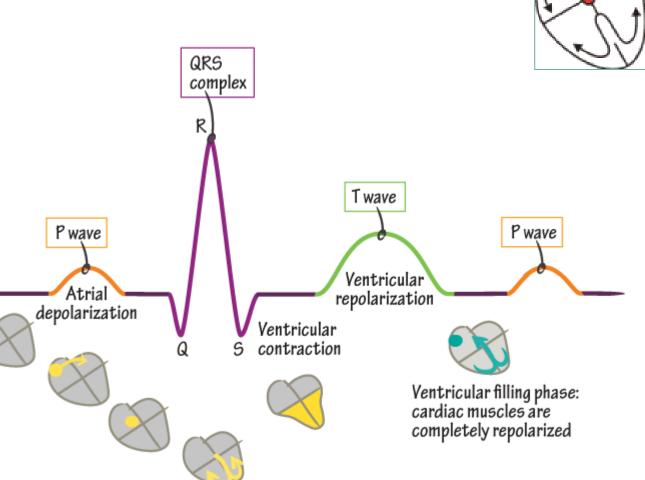

ECG: Heart Rhythm

- P-wave = SA node fires causing atrial depolarization
- PR Interval= impulse moves from atria into the ventricles
- QRS complex = ventricular depolarization occurs
- ST segment = part of repolarization (isoelectric phase)
- T-wave = ventricular repolarization occurs
- QT Interval= This interval spans the onset of depolarization to the completion of repolarization of the ventricles

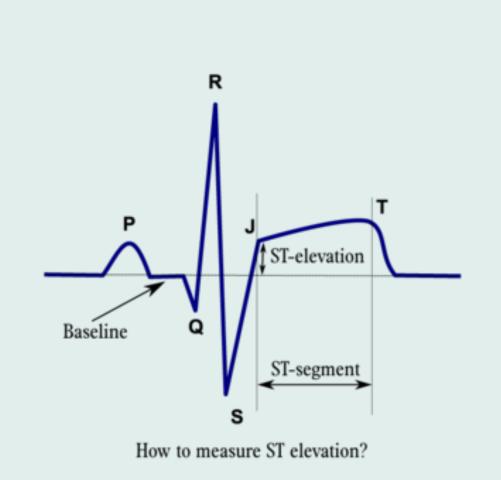
Things to look for in an ECG


- Rate
- Rhythm
- P-waves
- PR- Interval
- P and QRS Correlation
- QRS Rates
- Pacemaker

ECG Interpretation



• ECG's are recorded onto graph paper, which is laid out with specific measurements


ECG: What is normal?

- P-Wave: Atrial depolarization
- PR Interval (Normal= 0.12-0.2s): Beginning of the P-wave to the onset of the QRS complex
- QRS Interval (Normal <0.1s): Ventricular Depolarization

The ST Segment

- The J point is the the junction between the termination of the QRS complex and the beginning of the ST segment.
- ST depression occurs when the J point is displaced below baseline.
- ST elevation occurs when the J point is displaced above the baseline.
- ST depression and elevation can be used to determine the presence of a cardiac event or an emergent condition.

ST Segment & Heart Attack (MI)

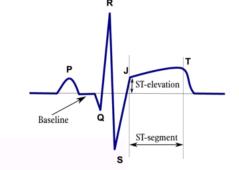
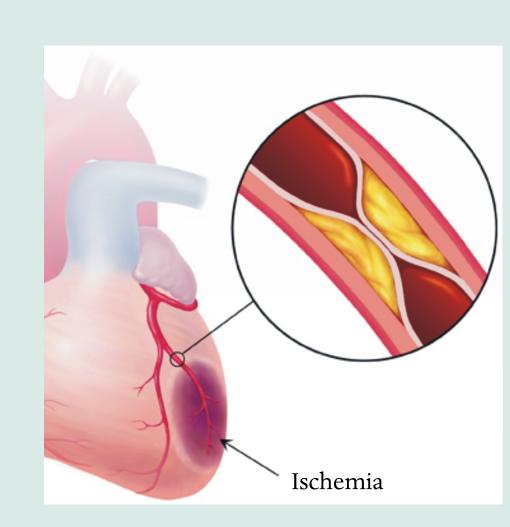
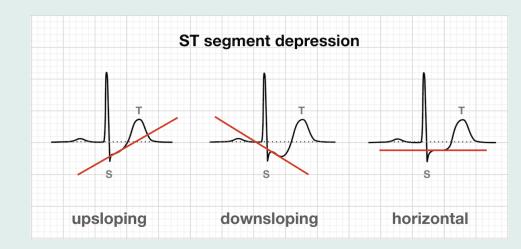


Table VII


Myocardial Infarction (MI)

How to measure ST elevation?

	ST segment	T wave	Q wave
acute	elevated	normal or inverted	sometimes present
recent	normal	usually inverted	present
old	normal	usually normal	present

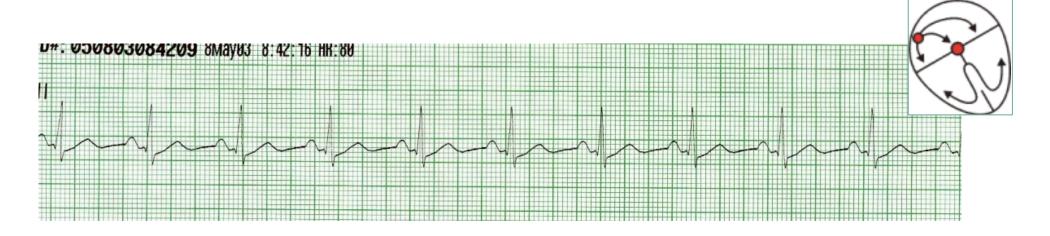

Ischemia

- Ischemia: A restriction in blood supply, causing a shortage of oxygen that is needed to keep tissues alive.
- A sudden and-or severe blockage of the coronary (heart) arteries can lead to a heart attack and cause serious abnormal heart rhythms.

Ischemia

- Ischemia may be reflected in an ECG by the following changes:
 - ST segment depression
 - T-wave inversion or flattening
 - Prolongation of the QT interval
 - Appearance of ventricular or supraventricular arrythmias
 - Conduction disturbances (AV block, Bundle Branch Block, etc.)
 - Increase in R-wave amplitude

Ischemia

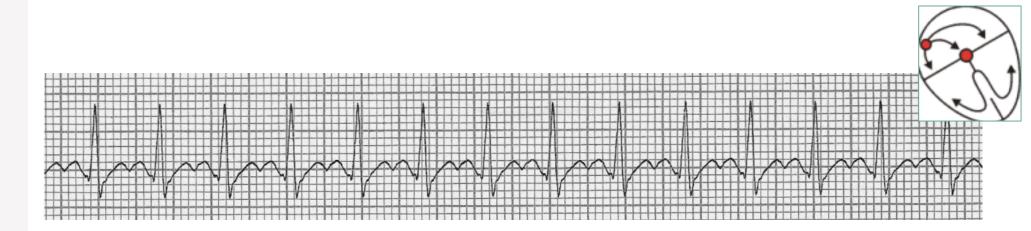

Important note!

Not all ST segment depression is considered pathological. It is dependent on the depth of the depression, and on the configuration of the ST segment, whether horizontal, upsloping, or downsloping. Schaman's Criteria for ST Segment Depression for Stress Testing Technicians

ST Configuration	Point of Measurement	ST Depression in mm.
Horizontal	60 msec. [1½ small squares] from J Point	0.5 mm.
Upsloping	80 msec. [2 small squares] from J Point	1.0 mm.
Downsloping	40 msec. [1 small square] from J Point	0.5 mm.

© J. P. Schaman

Normal Sinus Rhythm

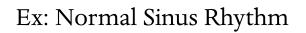


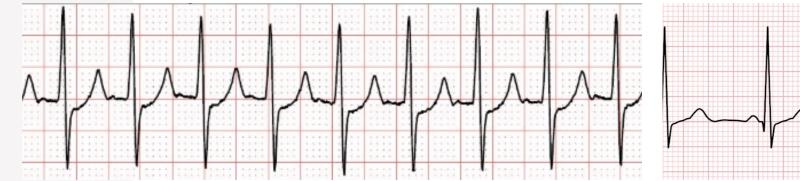
P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
 Occurs before each QRS Look alike 	 Constant and regular Interval 0.12-0.2 	 Rate 60- 100bpm Interval = or <0.1s 	• Regular	• SA Node

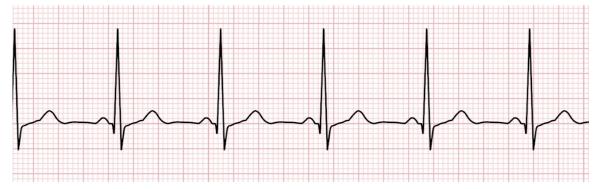
Types of Arrythmias: general terminology

- Tachycardia: fast heart rhythm (>100 beats per minute (bpm))
- **Bradycardia**: slow heart rhythm (< 60 beats per minute (bpm))
- **Supraventricular arrhythmias:** Begin in the atria (upper chambers of the heart). *Supra* means above; *ventricular* refers to the lower chambers of the heart (ventricles).
- Ventricular arrhythmias: Begin in the ventricles (lower chambers of the heart).
- **Bradyarrhythmias:** Slow heart rhythms that may be caused by disease in the heart's conduction system, such as the sinoatrial (SA) node, atrioventricular (AV) node or the Bundle of His-Purkinje Fiber network.

Types of Arrythmias: Sinus Tachycardia

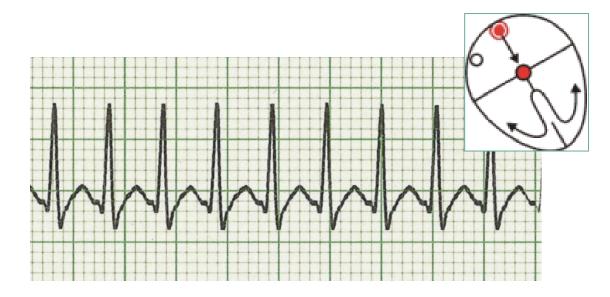



P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
Occurs before each QRSLook alike	 Constant and regular Interval 0.12-0.2 	 Rate 100-220bpm Interval: = or <0.1s 	• Regular	• SA Node

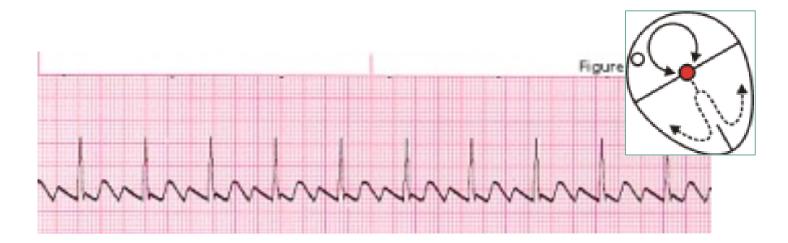

Types of Arrythmias: Supraventricular Tachycardia (SVT)

- SVT is also called paroxysmal atrial tachycardia (PAT).
- SVT impulses arise from the atrium or above the AV node.
- Conduction continues along the Bundle of His-Purkinje Fiber system, therefore the QRS shape is typically similar to the QRS shape seen during normal sinus rhythm.

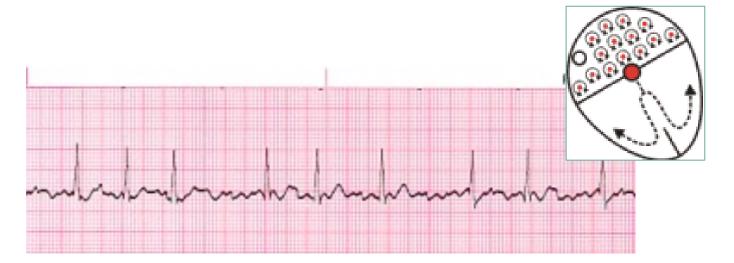
Ex: Supraventricular Tachycardia



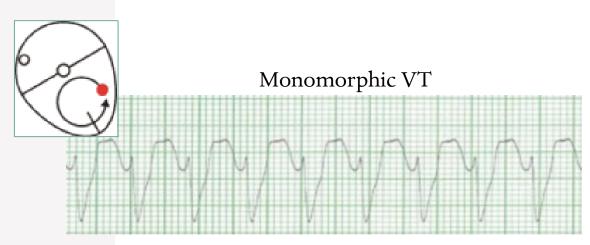
Sinus Tachycardia vs. Supraventricular Tachycardia

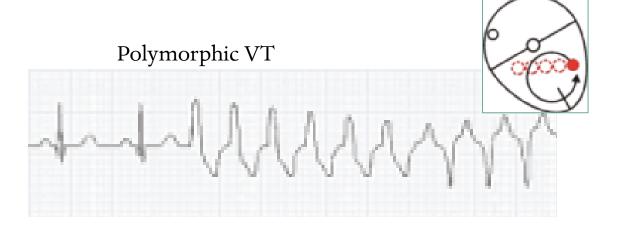

Sinus Tachycardia	Supraventricular Tachycardia
• Heart Rate: <220bpm	• Heart Rate: >220bpm
• Variable rate/rhythm	• Minimal variability in rate/rhythm
Gradual onset	Sudden onset
• P-waves are present	• P-waves are absent, abnormal or inverted

Types of Arrythmias: Paroxysmal Supraventricular Tachycardia (PSVT)

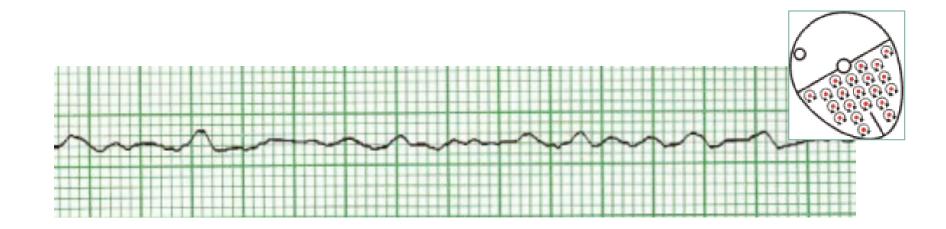

P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
• Not easily seen (often buried within the T- wave of the previous beat)	 Difficult to determine due to poorly distinguished P- wave 	• >150bpm	• Regular	 Originates above the ventricles, but not driven by the SA Node ©J. P. Schaman M.D. 2021

Types of Arrythmias: Atrial Flutter


P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
• Saw tooth	VariableDifficult to measure	 Can be slow or rapid Interval: <0.1s 	• Both atrial and ventricular complexes are regular (unless a variable block is present)	• A single re- entry circuit, where the impulse takes a circular course around the atria

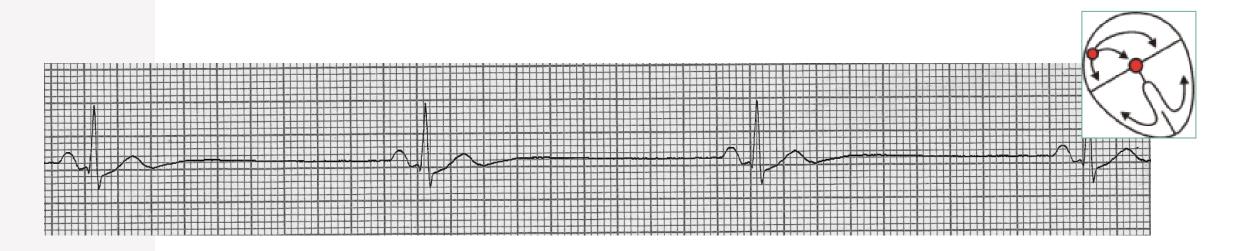

Types of Arrythmias: Atrial Fibrillation

P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
 No distinct P-wave Chaotic "fibrillating" waves 	• Absent/non- discernable	 Can be slow or rapid Interval: <0.1s 	• Both atrial and ventricular complexes are irregularly irregular	• Occurs from multiple re-entry sites, which results in very rapid atrial rate


Types of Arrythmias: Ventricular Tachycardia

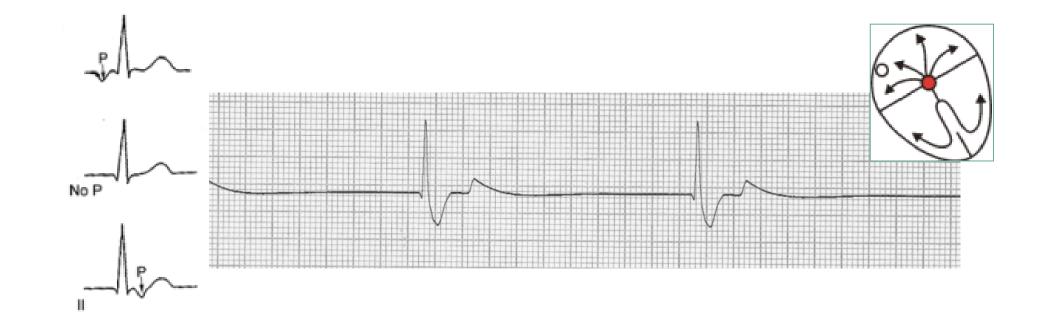
P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
 Rare If present, disassociated from the QRS 	• Absent	 Interval is wide (>0.12s) and unusual shape >120bpm 	 Monomorphic: usually a similar rhythm Polymorphic: a varied rhythm 	• Originates in the ventricles

Types of Arrythmias: Ventricular Fibrillation



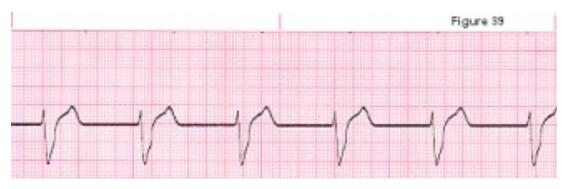
P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
• Absent	• Absent	Chaotic and poorly definedDifficult to measure	• Chaotic	• Multiple pacemakers throughout the ventricles

Types of Arrythmias: Ventricular Fibrillation



Types of Arrhythmias: Sinus Bradycardia

P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
Occurs before each QRSLook alike	 Constant & regular Interval = 0.12-0.2s 	Rate <60bpmInterval = or <0.1s	• Regular	• SA Node


Types of Arrhythmias: Junctional Rhythms

P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
 Can occur before, during or after the QRS complex Can be abnormal in size and shape 	 Normal or prolonged 	• Rate 40-60bpm	• Regular	 The SA node malfunctions The AV node initiates beats

Types of Arrhythmias: Idioventricular Rhythm

During idioventricular rhythm, the SA node and AV node fail to generate an electrical impulse. To compensate, the ventricles general impulses

P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
• Absent	• Absent	• Rate 20-40bpm, but can be faster	• Regular	• Ventricles

Types of Arrhythmias: 1° AV Block

P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
 Occurs before each QRS More of a "delay" than a block 	Constant & regularInterval >0.2s	• Variable rate	• Regular	• SA Node, but with a delay

Types of Arrhythmias: 2° AV Block

P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
 Occasional P- wave not followed by QRS 	• Progressive lengthening of the PR interval until the QRS is dropped	 Interval < 0.1s Rate ~50-80bpm 	• Atrial rate generally faster than ventricular rate (due to the dropped beat)	• Problem at the AV node with increased delay

Types of Arrhythmias: 2° AV Block

P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
 P-waves may not have corresponding QRS complexes 	 Intervals remain constant (if QRS present) 	• Slowed	 Atrial rate unaffected Ventricular rate slowed Ventricular irregularities due to blocked beats 	 Low-level block: <0.1s High level block: >0.12s

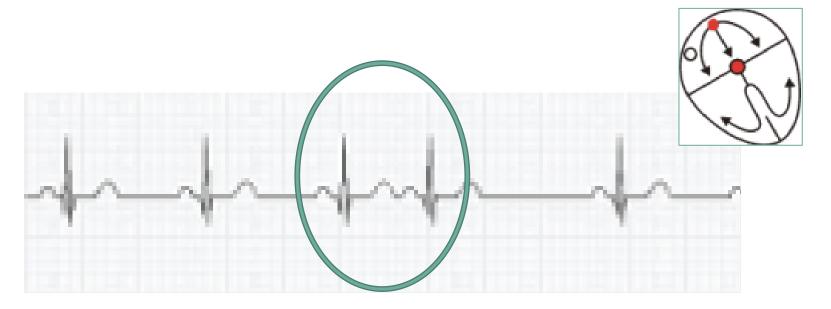
Types of Arrhythmias: 3° AV Block (complete)

P wave	PR Interval	QRS Complex	Rhythm	Pacemaker
• Normal	• No relationship between P-wave and R-wave	 Atrial rate: 60-100bpm Ventricular rate 20- 40bpm 	• Atrial and ventricular complexes are regular but disassociated	 Damage to the conduction systems means that No impulses can pass Ventricular beats arise
				©J. P. Schaman M.D. 2021

Types of Arrhythmias: Premature Ventricular Contraction (PVC)

Multifocal (Polymorphic) PVC

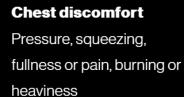
Types of Arrhythmias: Bigeminy & Trigeminy


• **Bigeminy**: Every other beat is a PVC

• **Trigeminy**: Every third beat is a PVC

Types of Arrhythmias: Premature Atrial Contraction (PAC)

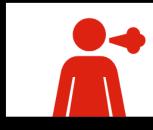
Premature atrial contractions (**PACs**) are premature heartbeats that are similar to PVCs, but instead occur in the upper chambers of the **heart**.


Symptoms of arrythmias may include:

- Palpitations: A feeling of skipped heartbeats, fluttering, "flip-flops" or feeling that the heart is "running away"
- Pounding in the chest
- Dizziness or feeling lightheaded
- Shortness of breath
- Chest discomfort
- Weakness or fatigue (feeling very tired)

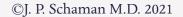
Note: Not all arrythmias present with symptoms. An arrhythmia may be **silent** (**not cause any symptoms**). A doctor can detect an irregular heartbeat during an examination by taking your pulse, listening to your heart or by performing diagnostic tests.

Signs of a heart attack

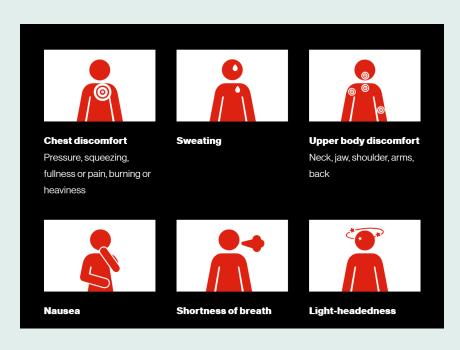


Sweating

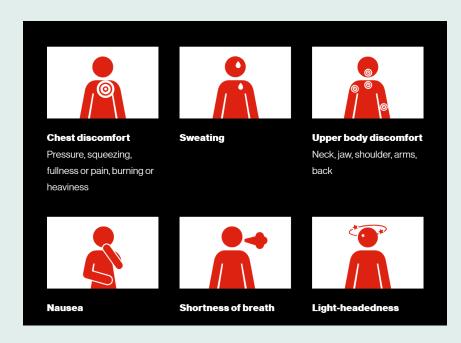
Upper body discomfort Neck, jaw, shoulder, arms, back



Shortness of breath


Light-headedness

Experiencing signs of a heart attack?


1. Call 9-1-1

- Or your local emergency number <u>immediately</u>. Emergency personnel can start treatment enroute to the hospital.
- 2. Stop all activity
 - Sit or lie down, in whatever position is most comfortable.
- 3. Take your nitroglycerin
 - If you take nitroglycerin, take your normal dosage.

Experiencing signs of a heart attack?

- 4. ASA (Aspirin) may be beneficial
 - Chew one and swallow one ASA (Aspirin), if you are not allergic or intolerant (either one 325 mg tablet (Adult Aspirin) or two 81 mg tablets (baby Aspirin)).
- 5. Rest and wait
 - Stay calm while waiting for help to arrive.
- 6. Keep a list of your medications in your wallet and by the phone.
 - Emergency personnel will want this information.

